3E current sensor

Датчик тока STS 6

Для электронного преобразования токов: постоянного, переменного, импульсного и т.д. в пропорциональный выходной сигнал с гальванической развязкой между первичной (силовой) и вторичной (измерительной) цепями.

Электрические параметры

I _{PN}	Номинальный входной ток, эфф.значение	6	А∙вит
I _P	Диапазон преобразования	0 ± 19.2	А∙вит
V _{OUT}	Выходное напряжение, при $I_p = 0$	2.5 1)	В
	при I _P	2.5±(0.625•	I_P/I_{PN}) B
$\mathbf{R}_{\scriptscriptstyle \perp}$	Сопротивление нагрузки	≥ 2	кОм
Ns	Число вторичных витков (± 0.1 %)	960	
\mathbf{R}_{IM}	Встроенный измерительный резистор (± 0.1 %)	100	Ом
TCR _{IM}	Температурный дрейф измерительного резистора	< 50	ppm/K
$V_{\rm c}$	Напряжение питания (± 5 %)	5	В
I _C	Потребляемый ток при $I_P = 0$, $V_C = 5 \text{ V}$	25+I _S ²⁾ +(V _{OUT}	/R _L) мА
$\dot{\mathbf{V}}_{d}$	Электрическая прочность изоляции, 50 Hz, 1 мин	3	кВ

Точностно-динамические	характеристики
------------------------	----------------

X	Точность преобразования при \mathbf{I}_{PN} , $\mathbf{T}_{A}=25^{\circ}\mathrm{C}$	± 0.2	%
\mathbf{X}_{G}	Полная точность преобразования при \mathbf{I}_{PN} , \mathbf{T}_{A} =	$25^{\circ}\text{C} \pm 0.7^{3)}$	%
\mathbf{e}_{\perp}	Нелинейность	< 0.1	%

Макс.знач.

TCV _{OUT}	Температурный дрейф \mathbf{V}_{OUT} при $\mathbf{I}_{P} = 0$	
	4000	

. Гемпературныи дреиф ${\bf v}_{\rm OUT}$ при ${\bf I}_{\rm P}=0$	Í	i
- 40°C + 85	5°C 0,5	мВ/К
Температурный дрейф коэфф. преобразован	ия,	
- 40°C + 85	5°C 50 ⁴⁾	ppm/K
Гистерезис выходного напряжения при $I_p = 0$,		
после прохождения тока 3 х	$\mathbf{I}_{PN} = \pm 0.5$	мВ
5>	$\mathbf{I}_{PN} = \pm 2.0$	мВ
10 >	$\mathbf{I}_{PN} = \pm 2.0$	мВ
Время задержки при 90 % от І Римах	< 400	нС
Скорость нарастания входного тока	> 50	А/мкС
Частотный диапазон (0 0.5 дБ)	0 10	0 kГц
(- 0.5 1 дБ)	0 20	0 kГц
	$-40^{\circ}\text{C}+88$ Температурный дрейф коэфф. преобразован $-40^{\circ}\text{C}+88$ Гистерезис выходного напряжения при $\mathbf{I}_{p}=0$, после прохождения тока $3\times 5\times 10\times 10\times 10$ Время задержки при 90 % от $\mathbf{I}_{p\text{-max}}$ Скорость нарастания входного тока Частотный диапазон (0 0.5 дБ)	$^{-}$ 40°С + 85°С

Справочные данные

$T_{_{\rm A}}$	Рабочая температура	- 40 + 85	°C
T_s	Температура хранения	- 50 + 100	°C
m	Bec	10	Γ

<u>Примечание</u>: ¹⁾ Абсолютное значение @ $T_A = 25$ °C, 2.4875 < V_{OUT} < 2.5125

2) См. блок-схему на обороте

 $^{3)}\, C$ учетом встроенного измерительного резистора $R_{_{IM}}$

4) Определяется термостабильностью измерительного резистора ТСК

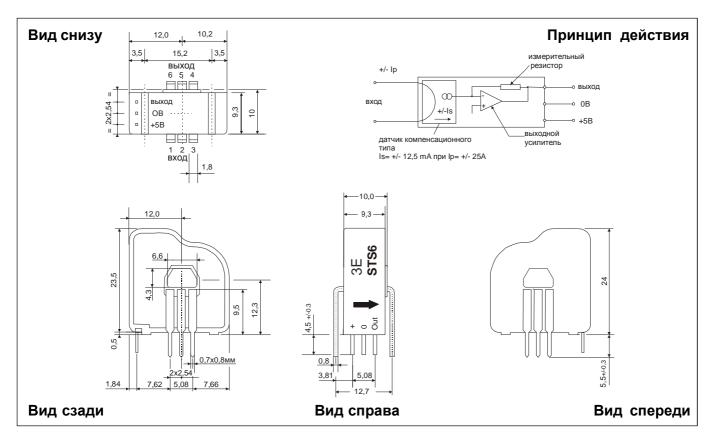
$I_{pN} = 2 - 3 - 6 A$

Отличительные особенности

- Многопредельный компенсационный датчик на эффекте Холла.
- Однополярное питание +5В
- Разработан для установки на печатную плату.
- Изолирующий пластиковый негорючий корпус.
- Адаптирован к применению в микропроцессорных и микроконтроллерных системах.
- Встроенный измерительный резистор
- Расширенный диапазон преобразования.

Преимущества

- Отличная точность
- Хорошая линейность
- Очень низкий температурный дрейф
- Оптимальное время задержки
- Широкий частотный диапазон
- Высокая помехозащищенность
- Высокая перегрузочная способность.


Применение

- Частотно-регулируемый привод переменного тока
- Преобразователи для привода постоянного тока
- Системы управления работой аккумуляторных батарей
- Источники бесперебойного питания
- Программируемые источники питания
- Источники питания для сварочных агрегатов.

Изготовитель фирма 3Е, Китай Поставщик -ООО "Лаборатория ДТиН"

3E current sensor

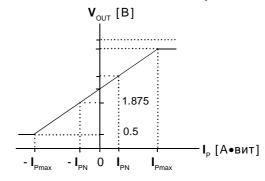
Размеры STS 6 (в мм.)

Число первичных витков	Первичный входной ток, эфф.знач. І _{РN} , А	Ном. выходное напряжение V _{our} , B	Сопротивление первичной цепи, мОм	Индуктивность первичной цепи, мкГн	Рекомендуемая схема подключения
1	± 6	2.5 ± 0.625	0.18	0.013	6 5 4 ВЫХОД О
2	± 3	2.5 ± 0.600	0.81	0.05	6 5 4 ВЫХОД О О О ВХОД 1 2 3
3	± 2	2.5 ± 0.600	1.62	0.12	6 5 4 ВЫХОД О О О ВХОД 1 2 3

Механические характеристики

• Общий допуск ± 0.2 мм

• Подключение первичной цепи 6 выводов 0.7 x 0.8 мм Рекомендованные отверстия в плате 1.3 мм


• Подключение вторичной цепи 3 вывода 0.5 x 0.35 мм Рекомендованные отверстия в плате 0.8 мм

• Отверстие для первичной шины Ø 3.2 мм

Примечание

- **ВНИМАНИЕ!** Необходимо сторогое соблюдение мер по защите от статического электричества при хранении и монтаже согласно ОСТ 11.073.062-84
- Выходное напряжение увеличивается, когда ток протекает от выводов 1,2,3 к выводам 4,5,6

Первичный ток - Выходное напряжение

Партия № _____ Дата отгрузки____